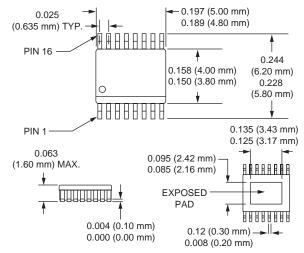
Preliminary

AP121-89

GaAs IC 3 Stage GSM Power Amplifier

Features

- +3.5 V Operation
- Output Power of 35 dBm
- Efficiency Typically 55%
- Outstanding Efficiency vs. Supply Voltage
- High Power SSOP-16 Package with Exposed Pad
- Wide Power Control Range (70 dB)
- Designed to work with AP122-89 as a Dualband Solution


Description

The AP121-89 is a low cost IC power amplifier designed for the 880–915 MHz frequency band. It features single supply, 3.5 V battery operation and exceptional efficiency. Drive level requirements are minimized with 3 stages of amplification, thereby reducing the cost of the VCO. The AP121-89 is designed to be stable over a temperature range of -40 to +85°C and over a 10:1 output VSWR load. External matching is used for improved performance and flexibility.

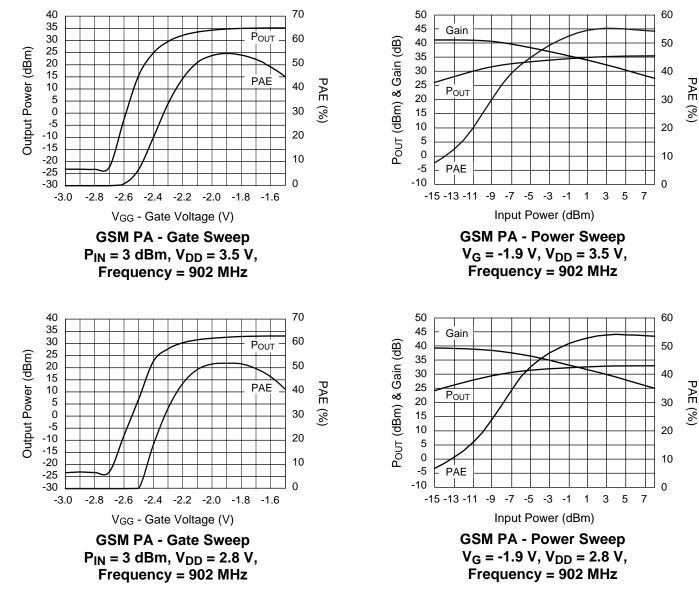
Output Matching Circuit

The output match for the AP121-89 is provided externally in order to improve performance, reduce cost, and add flexibility. By making use of ceramic surface mount components with better Qs than GaAs matching elements, a lower loss matching network can be made. This lower loss results in higher power and efficiency for the amplifier. Also, by keeping these elements external the GaAs die size is reduced and the overall cost is less. This approach also permits the flexibility to tweak the amplifier for optimum performance at different powers, and/or frequencies.

SSOP-16 with Exposed Pad

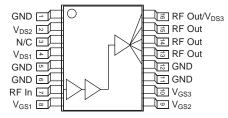
Absolute Maximum Ratings

Quantity	Value	Unit	
Amplifier Supply Voltage (V _{DS})	10	V	
Input RF Power (PIN)	14	dBm	
Duty Cycle	50	%	
Operating Temperature (T _{OP})	-40 to +85	°C	
Storage Temperature (T _{ST})	-65 to +150	°C	


Electrical Specifications at 25°C

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output Power	P _{OUT}	$T_{OP} = +25^{\circ}C$	34.5	35		dBm
		V _{DS} = 2.8 V, T _{OP} = (-40 to +85°C)	32.5	33		
Power Added Efficiency	n _{PAE}		50	55		%
Control Voltage Range	V _{GG}		-3		-1	V
2nd Harmonic	H ₂			-43	-40	dBc
3rd Harmonic	H ₃			-48	-45	dBc
Input VSWR	VSWR _{IN}	P_{OUT} (5–35 dBm), Controlled by V_{GG}	3:1	2:1		
Forward Isolation	POUT, STANDBY	P _{IN} = 10 dBm, V _{GG} = -3.0 V		-49	-40	dBm
Switching Time	t _R , t _F	Time from P _{OUT} = -10 dBm to P _{OUT} = 34.5 dBm		1	2	μS
Burn Out	BO	$V_{DS} = 2.8 \text{ V to 6.0 V,}$ $P_{IN} = 0 \text{ dBm to 10 dBm,}$ $Z_{S} = 50 \Omega, \text{ Load}$ $VSWR = 10:1, \text{ All Phase Angles}$	No Module Damage or Permanent Degradation			
Stability	Stab.	All Combinations of the Following Parameters: $I_{DS} = 0A$ to xA, x = Current at $P_{OUT} = 34.5$ dBm in 50 Ω $P_{IN} = 3$ dBm to 10 dBm, $V_{DS} = 2.5$ V to 4.5 V, $T_{OP} = -40$ to +85°C, Load VSWR = 10:1, All Phase Angles	No Parasitic Oscillations Above -36 dBm			
Slope P _{OUT} /V _{GG}		P _{OUT} = -15 dBm to 35 dBm	10	100	150	dB/V
Noise Power		100 KHz BW 925-960 MHz Band		-90	-85	dBm
Phase Change	AM-PM	The Change in Phase When P _{OUT} Changes from 33 dBm to 34 dBm		5	10	Deg.

Characteristic Values:


 $P_{IN} = 3 \text{ dBm}$ fc = 880–915 MHz

 $\begin{array}{l} T_{OB} = 3.5 \ V_{OB} = 3.5 \ V_{OP} = +25^{\circ} C \\ V_{GG} = Switched at 217 \ Hz \ with \ Duty \ Cycle \ of \ 12.5\% \end{array}$

Typical Performance Data

Pin Out

Pin Configuration

Terminal	Symbol	Function	
1	GND	Ground	
2	V _{DS2}	Stage 2 Drain Voltage	
3	N/C	No Connect	
4	V _{DS1}	Stage 1 Drain Voltage	
5	GND	Ground	
6	GND	Ground	
7	RF IN	RF Input	
8	V _{GS1}	Stage 1 Gate Voltage	
9	V _{GS2}	Stage 2 Gate Voltage	
10	V _{GS3}	Stage 3 Gate Voltage	
11	GND	Ground	
12	GND	Ground	
13	RF Out	RF Output	
14	RF Out	RF Output	
15	RF Out	RF Output	
16	RF Out/V _{DS3}	RF Output/Stage 3 Drain Voltage	