Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Maximum Temperature of 260°C/10 Seconds for Soldering
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: 2BL4

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100$ °C)	I _O	2.0	Α
Peak Repetitive Forward Current (At Rated V_R , Square Wave, 20 kHz, $T_C = 105^{\circ}C$)	I _{FRM}	4.0	А
Non–Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	25	Α
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor™

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 40 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

2BL4 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS240LT3	SMB	2500/Tape & Reel

THERMAL CHARACTERISTICS

Characteristic		Value	Unit
Thermal Resistance — Junction–to–Lead (Note 1.)	$R_{ heta JL}$	18	°C/W
Thermal Resistance — Junction–to–Ambient (Note 3.)	$R_{\theta JA}$	78	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.)		V _F	T _J = 25°C	T _J = 125°C	Volts
see Figure 2	$(I_F = 2.0 \text{ A})$ $(I_F = 4.0 \text{ A})$		0.43 0.54	0.375 0.55	
Maximum Instantaneous Reverse Current (Note 2.)		I _R	T _J = 25°C	T _J = 100°C	mA
see Figure 4	$(V_R = 40 \text{ V})$ $(V_R = 20 \text{ V})$		2.0 0.5	60 40	

- Mounted with minimum recommended pad size, PC Board FR4.
- Pulse Test: Pulse Width ≤ 250 µs, Duty Cycle ≤ 2.0%.
 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

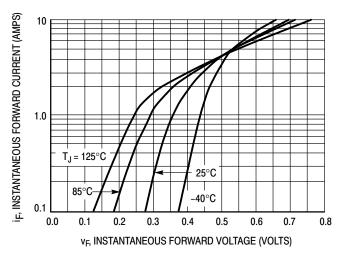


Figure 1. Typical Forward Voltage

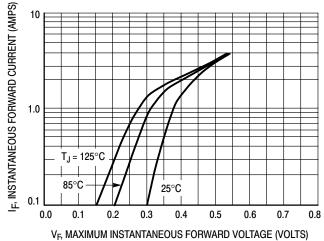
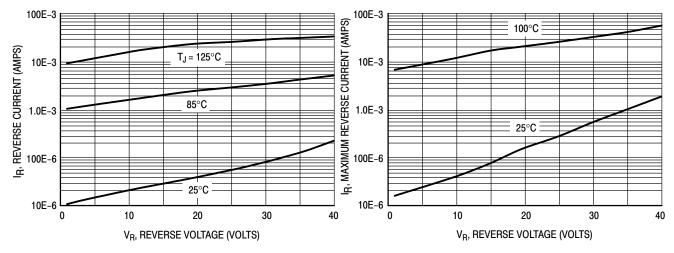
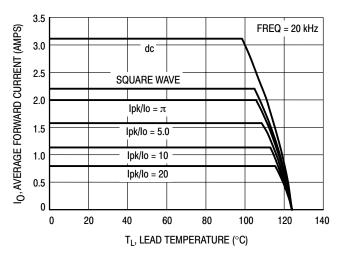
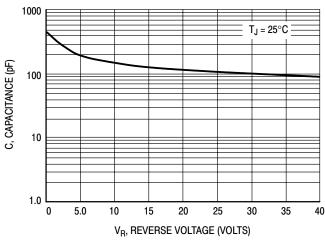




Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current


Figure 4. Maximum Reverse Current

P_{FO}, AVERAGE POWER DISSIPATION (WATTS) 1.6 dc 1.4 SQUARE WAVE $\text{lpk/lo} = \pi$ 1.2 lpk/lo = 5.0 1.0 lpk/lo = 108.0 Ipk/Io = 20 0.6 0.4 0.2 1.5 2.5 3.5 0 0.5 1.0 2.0 3.0 IO, AVERAGE FORWARD CURRENT (AMPS)

Figure 5. Current Derating

Figure 6. Forward Power Dissipation

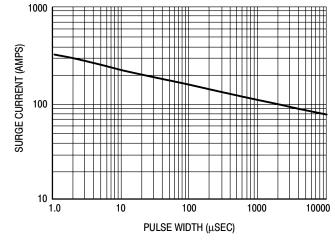


Figure 7. Capacitance

Figure 8. Maximum Non-Repetitive Forward Surge Current

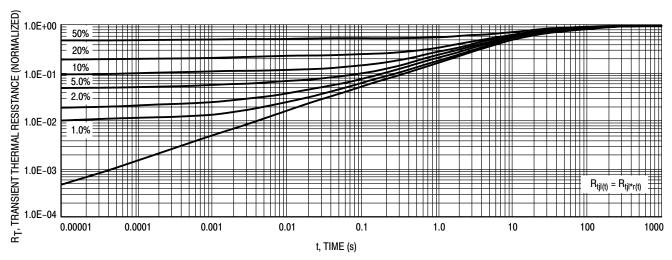
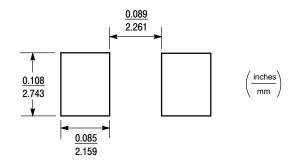
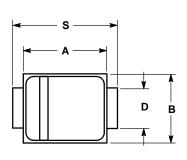
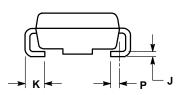
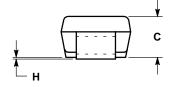




Figure 9. Thermal Response


MINIMUM SOLDER PAD SIZES



PACKAGE DIMENSIONS

SMB PLASTIC PACKAGE CASE 403A-03 ISSUE D

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.160	0.180	4.06	4.57	
В	0.130	0.150	3.30	3.81	
С	0.075	0.095	1.90	2.41	
D	0.077	0.083	1.96	2.11	
Н	0.0020	0.0060	0.051	0.152	
J	0.006	0.012	0.15	0.30	
K	0.030	0.050	0.76	1.27	
P	0.020 REF		0.51 REF		
S	0.205	0.220	5.21	5.59	

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com

Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.